• Home
  • Weight loss
  • Vegan diet
  • Diet plans
  • Fitness
  • Diet
  • Nutrition
Facebook Twitter Instagram Pinterest Vimeo YouTube
Same Day Health SolutionsSame Day Health Solutions
  • Home
  • About us
  • Contact us
  • Privacy policy
  • Terms and conditions
Facebook Twitter Instagram
  • Home
  • Weight loss
  • Vegan diet
  • Diet plans
  • Fitness
  • Diet
  • Nutrition
Same Day Health SolutionsSame Day Health Solutions
Home»Nutrition»Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition | BMC Medicine
Nutrition

Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition | BMC Medicine

adminBy adminOctober 19, 2022No Comments11 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Reddit WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email
  • Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–74. https://doi.org/10.3390/metabo3030552.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scalbert A, Huybrechts I, Gunter MJ. The food exposome. In: Dagnino S, Macherone A, editors. Unraveling the exposome: Springer International Publishing. 2019. p. 217–45. https://doi.org/10.1007/978-3-319-89321-1_8.

  • Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. The blood exposome and its role in discovering causes of disease. Environ Health Perspect. 2014;122(8):769–74. https://doi.org/10.1289/ehp.1308015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Domínguez R, Jáuregui O, Queipo-Ortuño MI, Andrés-Lacueva C. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. Anal Chem. 2020;92(20):13767–75. https://doi.org/10.1021/acs.analchem.0c02008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Franquesa A, Burkart AM, Isganaitis E, Patti ME. What have metabolomics approaches taught us about type 2 diabetes? Curr Diab Rep. 2016;16(8):74. https://doi.org/10.1007/s11892-016-0763-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahola-Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62(12):2298–309. https://doi.org/10.1007/s00125-019-05001-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Gao HY, Fan ZY, He Y, Yan YX. Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. J Clin Endocrinol Metab. 2020;105(4):1000–8. https://doi.org/10.1210/clinem/dgz240.

    Article 

    Google Scholar
     

  • McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res. 2018;122(9):1238–58. https://doi.org/10.1161/CIRCRESAHA.117.311002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavus E, Karakas M, Ojeda FM, et al. Association of circulating metabolites with risk of coronary heart disease in a European population: results from the biomarkers for cardiovascular risk assessment in Europe (BiomarCaRE) Consortium. JAMA Cardiol. 2019;4(12):1270–9. https://doi.org/10.1001/jamacardio.2019.4130.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller J, Bertsch T, Volke J, et al. Narrative review of metabolomics in cardiovascular disease. J Thorac Dis. 2021;13(4):2532–50. https://doi.org/10.21037/jtd-21-22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • His M, Viallon V, Dossus L, et al. Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med. 2019;17(1):178. https://doi.org/10.1186/s12916-019-1408-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt JA, Fensom GK, Rinaldi S, et al. Pre-diagnostic metabolite concentrations and prostate cancer risk in 1077 cases and 1077 matched controls in the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2017;15(1):122. https://doi.org/10.1186/s12916-017-0885-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt JA, Fensom GK, Rinaldi S, et al. Patterns in metabolite profile are associated with risk of more aggressive prostate cancer: a prospective study of 3,057 matched case-control sets from EPIC. Int J Cancer. 2020;146(3):720–30. https://doi.org/10.1002/ijc.32314.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dossus L, Kouloura E, Biessy C, et al. Prospective analysis of circulating metabolites and endometrial cancer risk. Gynecologic Oncol. 2021. https://doi.org/10.1016/j.ygyno.2021.06.001.

  • Guida F, Tan VY, Corbin LJ, et al. The blood metabolome of incident kidney cancer: a case–control study nested within the MetKid consortium. PLOS Med. 2021;18(9):e1003786. https://doi.org/10.1371/journal.pmed.1003786.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu X, Xiang YB, Rothman N, et al. Prospective study of blood metabolites associated with colorectal cancer risk. Int J Cancer. 2018;143(3):527–34. https://doi.org/10.1002/ijc.31341.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harlid S, Gunter MJ, Van Guelpen B. Risk-predictive and diagnostic biomarkers for colorectal cancer; a systematic review of studies using pre-diagnostic blood samples collected in prospective cohorts and screening settings. Cancers. 2021;13(17):4406. https://doi.org/10.3390/cancers13174406.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothwell JA, Bešević J, Dimou N, et al. Circulating amino acid levels and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition and UK Biobank cohorts (In preparation).

  • Stepien M, Duarte-Salles T, Fedirko V, et al. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: findings from a prospective cohort study. Int J Cancer. 2016;138(2):348–60. https://doi.org/10.1002/ijc.29718.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shu X, Zheng W, Yu D, et al. Prospective metabolomics study identifies potential novel blood metabolites associated with pancreatic cancer risk. Int J Cancer. 2018;143(9):2161–7. https://doi.org/10.1002/ijc.31574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeleznik OA, Clish CB, Kraft P, Avila-Pacheco J, Eliassen AH, Tworoger SS. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annu Rev Pathol. 2016;11:421–49. https://doi.org/10.1146/annurev-pathol-012615-044359.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiebe N, Stenvinkel P, Tonelli M. Associations of chronic inflammation, insulin resistance, and severe obesity with mortality, myocardial infarction, cancer, and chronic pulmonary disease. JAMA Netw Open. 2019;2(8):e1910456. https://doi.org/10.1001/jamanetworkopen.2019.10456.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Schoufour J, Wang DD, et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort study. BMJ. 2020:l6669. https://doi.org/10.1136/bmj.l6669.

  • Pietzner M, Stewart ID, Raffler J, et al. Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat Med. 2021:1–9. https://doi.org/10.1038/s41591-021-01266-0.

  • Kühn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016;14:13. https://doi.org/10.1186/s12916-016-0552-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross SM, Tibshirani R. Data shared lasso: a novel tool to discover uplift. Comput Stat Data Anal. 2016;101:226–35. https://doi.org/10.1016/j.csda.2016.02.015.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ollier E, Viallon V. Regression modelling on stratified data with the lasso. Biometrika. 2017;104(1):83–96. https://doi.org/10.1093/biomet/asw065.

    Article 

    Google Scholar
     

  • Ballout N, Garcia C, Viallon V. Sparse estimation for case-control studies with multiple disease subtypes. Biostatistics. 2021;22(4):738–55. https://doi.org/10.1093/biostatistics/kxz063.

    Article 
    PubMed 

    Google Scholar
     

  • Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–24. https://doi.org/10.1079/PHN2002394.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viallon V, His M, Rinaldi S, et al. A new pipeline for the normalization and pooling of metabolomics data. Metabolites. 2021;11(9):631. https://doi.org/10.3390/metabo11090631.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chavent M, Kuentz-Simonet V, Liquet B, Saracco J. ClustOfVar: an R package for the clustering of variables. J Stat Software. 2012;50:1–16. https://doi.org/10.18637/jss.v050.i13.

    Article 

    Google Scholar
     

  • Carayol M, Leitzmann MF, Ferrari P, et al. Blood metabolic signatures of body mass index: a targeted metabolomics study in the EPIC cohort. J Proteome Res. 2017;16(9):3137–46. https://doi.org/10.1021/acs.jproteome.6b01062.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kliemann N, Viallon V, Murphy N, et al. Metabolic signatures of greater body size and their associations with risk of colorectal and endometrial cancers in the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2021;19(1):101. https://doi.org/10.1186/s12916-021-01970-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pischon T, Nimptsch K. Obesity and cancer. Recent Results in Cancer Research. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-42542-9.

  • Fortner RT, Katzke V, Kühn T, Kaaks R. Obesity and breast cancer. Recent Results Cancer Res. 2016;208:43–65. https://doi.org/10.1007/978-3-319-42542-9_3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32. https://doi.org/10.1038/s41575-019-0189-8.

    Article 
    PubMed 

    Google Scholar
     

  • Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84. https://doi.org/10.1016/j.eururo.2018.08.036.

    Article 
    PubMed 

    Google Scholar
     

  • Dashti SG, English DR, Simpson JA, et al. Adiposity and endometrial cancer risk in postmenopausal women: a sequential causal mediation analysis. Cancer Epidemiol Biomarkers Prev. 2021;30(1):104–13. https://doi.org/10.1158/1055-9965.EPI-20-0965.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tibshirani R. Regression shrinkage and selection via the lasso. J Royl Stat Soc Series B (Methodological). 1996;58(1):267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

    Article 

    Google Scholar
     

  • Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006;101(476):1418–29. https://doi.org/10.1198/016214506000000735.

    Article 
    CAS 

    Google Scholar
     

  • Krämer N, Schäfer J, Boulesteix AL. Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics. 2009;10(1):384. https://doi.org/10.1186/1471-2105-10-384.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He K, Wang Y, Zhou X, Xu H, Huang C. An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis. Lifetime Data Anal. 2019;25(3):569–85. https://doi.org/10.1007/s10985-018-9455-2.

    Article 
    PubMed 

    Google Scholar
     

  • Ballout N, Etievant L, Viallon V. On the use of cross-validation for the calibration of the adaptive lasso. arXiv. 2005:10119 Published online July 15, 2021. Accessed 1 Dec 2021. http://arxiv.org/abs/2005.10119.

  • Chen Y, Yang Y. The one standard error rule for model selection: does it work? Stats. 2021;4(4):868–92. https://doi.org/10.3390/stats4040051.

    Article 

    Google Scholar
     

  • Bach FR. Bolasso: model consistent Lasso estimation through the bootstrap. In: Proceedings of the 25th International Conference on Machine Learning. ICML ’08: Association for Computing Machinery. 2008. p. 33–40. https://doi.org/10.1145/1390156.1390161.

  • Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat. 2004;32(2):407–99. https://doi.org/10.1214/009053604000000067.

    Article 

    Google Scholar
     

  • Taylor J, Tibshirani R. Post-selection inference for -penalized likelihood models. Can J Stat. 2018;46(1):41–61. https://doi.org/10.1002/cjs.11313.

    Article 
    PubMed 

    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royl Stat Soc Series B (Methodological). 1995;57(1):289–300.


    Google Scholar
     

  • Treede I, Braun A, Sparla R, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155–64. https://doi.org/10.1074/jbc.M704408200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50. https://doi.org/10.1038/nrm2329.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5:e189. https://doi.org/10.1038/oncsis.2015.49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:3898502. https://doi.org/10.1155/2016/3898502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stepien M, Keski-Rahkonen P, Kiss A, et al. Metabolic perturbations prior to hepatocellular carcinoma diagnosis: findings from a prospective observational cohort study. Int J Cancer. 2021;148(3):609–25. https://doi.org/10.1002/ijc.33236.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newton H, Wang YF, Camplese L, et al. Systemic muscle wasting and coordinated tumour response drive tumourigenesis. Nat Commun. 2020;11:4653. https://doi.org/10.1038/s41467-020-18502-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumpenberger T, Brezina S, Keski-Rahkonen P, et al. Untargeted metabolomics reveals major differences in the plasma metabolome between colorectal cancer and colorectal adenomas. Metabolites. 2021;11(2):119. https://doi.org/10.3390/metabo11020119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elia I, Broekaert D, Christen S, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8(1):15267. https://doi.org/10.1038/ncomms15267.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watford M. Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr. 2008;138(10):2003S–7S. https://doi.org/10.1093/jn/138.10.2003S.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lécuyer L, Dalle C, Lyan B, et al. Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort. Cancer Epidemiol Biomarkers Prev. 2019;28(8):1300–7. https://doi.org/10.1158/1055-9965.EPI-19-0154.

    Article 
    PubMed 

    Google Scholar
     

  • Jobard E, Dossus L, Baglietto L, et al. Investigation of circulating metabolites associated with breast cancer risk by untargeted metabolomics: a case-control study nested within the French E3N cohort. Br J Cancer. 2021;124(10):1734–43. https://doi.org/10.1038/s41416-021-01304-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fages A, Duarte-Salles T, Stepien M, et al. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med. 2015;13:242. https://doi.org/10.1186/s12916-015-0462-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao H, Dong B, Liu X, Xuan H, Huang Y, Lin D. Metabonomic profiling of renal cell carcinoma: high-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Analytica Chimica Acta. 2008;624(2):269–77. https://doi.org/10.1016/j.aca.2008.06.051.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plewa S, Horała A, Dereziński P, et al. Usefulness of amino acid profiling in ovarian cancer screening with special emphasis on their role in cancerogenesis. Int J Mol Sci. 2017;18(12):E2727. https://doi.org/10.3390/ijms18122727.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi H, Talmon G, Wang J. Glutamate in cancers: from metabolism to signaling. J Biomed Res. 2019;34(4):260–70. https://doi.org/10.7555/JBR.34.20190037.

    Article 
    PubMed 

    Google Scholar
     

  • Plewa S, Horała A, Dereziński P, Nowak-Markwitz E, Matysiak J, Kokot ZJ. Wide spectrum targeted metabolomics identifies potential ovarian cancer biomarkers. Life Sci. 2019;222:235–44. https://doi.org/10.1016/j.lfs.2019.03.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37(1):153–68. https://doi.org/10.1007/s00726-008-0210-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadimitriou N, Gunter MJ, Murphy N, et al. Circulating tryptophan metabolites and risk of colon cancer: results from case-control and prospective cohort studies. Int J Cancer. 2021;149(9):1659–69. https://doi.org/10.1002/ijc.33725.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in food. Front Nutr. 2019;6:108. https://doi.org/10.3389/fnut.2019.00108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moinard C, Cynober L, de Bandt JP. Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005;24(2):184–97. https://doi.org/10.1016/j.clnu.2004.11.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vargas AJ, Ashbeck EL, Wertheim BC, et al. Dietary polyamine intake and colorectal cancer risk in postmenopausal women. Am J Clin Nutr. 2015;102(2):411–9. https://doi.org/10.3945/ajcn.114.103895.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2018;15(2):362–5. https://doi.org/10.1080/15548627.2018.1539592.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res. 2020;159:104943. https://doi.org/10.1016/j.phrs.2020.104943.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys Acta. 2017;1862(8):766–70. https://doi.org/10.1016/j.bbalip.2017.02.016.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Köfeler HC, Ahrends R, Baker ES, et al. Recommendations for good practice in MS-based lipidomics. J Lipid Res. 2021;62:100138. https://doi.org/10.1016/j.jlr.2021.100138.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floegel A, Drogan D, Wang-Sattler R, et al. Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS One. 2011;6(6):e21103. https://doi.org/10.1371/journal.pone.0021103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Townsend MK, Clish CB, Kraft P, et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin Chem. 2013;59(11):1657–67. https://doi.org/10.1373/clinchem.2012.199133.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carayol M, Licaj I, Achaintre D, et al. Reliability of serum metabolites over a two-year period: a targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLoS One. 2015;10(8):e0135437. https://doi.org/10.1371/journal.pone.0135437.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • admin
    • Website

    Related Posts

    Here’s How Much Caffeine You Can Really Have in a Day

    November 16, 2022

    Giant Food links with prepaid debit card program to tackle food insecurity

    November 16, 2022

    Space tomatoes and yogurt bags: NASA scientists are sending experiments to space that will enable longer future missions | News

    November 16, 2022

    Leave A Reply Cancel Reply

    Latest

    Here’s How Much Caffeine You Can Really Have in a Day

    November 16, 2022

    Giant Food links with prepaid debit card program to tackle food insecurity

    November 16, 2022

    Space tomatoes and yogurt bags: NASA scientists are sending experiments to space that will enable longer future missions | News

    November 16, 2022
    Follow us
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    News
    • Diet (1,949)
    • Diet plans (1,948)
    • Fitness (1,937)
    • Nutrition (1,948)
    • Uncategorized (1)
    • Vegan diet (1,977)
    • Weight loss (1,979)
    News
    • Diet (1,949)
    • Diet plans (1,948)
    • Fitness (1,937)
    • Nutrition (1,948)
    • Uncategorized (1)
    • Vegan diet (1,977)
    • Weight loss (1,979)

    Subscribe to Updates

    Get the latest creative news from samedayhealthsolutions.

    Follow us
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    Facebook Twitter Instagram Pinterest
    • Home
    • About us
    • Contact us
    • Privacy policy
    • Terms and conditions
    © 2023 Designed bysamedayhealthsolutions .

    Type above and press Enter to search. Press Esc to cancel.